3.7.95 \(\int \frac {1}{(d x)^{7/2} (a^2+2 a b x^2+b^2 x^4)} \, dx\) [695]

3.7.95.1 Optimal result
3.7.95.2 Mathematica [A] (verified)
3.7.95.3 Rubi [A] (verified)
3.7.95.4 Maple [A] (verified)
3.7.95.5 Fricas [C] (verification not implemented)
3.7.95.6 Sympy [F]
3.7.95.7 Maxima [A] (verification not implemented)
3.7.95.8 Giac [A] (verification not implemented)
3.7.95.9 Mupad [B] (verification not implemented)

3.7.95.1 Optimal result

Integrand size = 28, antiderivative size = 318 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {9}{10 a^2 d (d x)^{5/2}}+\frac {9 b}{2 a^3 d^3 \sqrt {d x}}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}-\frac {9 b^{5/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{13/4} d^{7/2}}+\frac {9 b^{5/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{13/4} d^{7/2}}+\frac {9 b^{5/4} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{13/4} d^{7/2}}-\frac {9 b^{5/4} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{13/4} d^{7/2}} \]

output
-9/10/a^2/d/(d*x)^(5/2)+1/2/a/d/(d*x)^(5/2)/(b*x^2+a)-9/8*b^(5/4)*arctan(1 
-b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))/a^(13/4)/d^(7/2)*2^(1/2)+9/8 
*b^(5/4)*arctan(1+b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^(1/4)/d^(1/2))/a^(13/4)/d^ 
(7/2)*2^(1/2)+9/16*b^(5/4)*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(1/2)-a^(1/4)*b^ 
(1/4)*2^(1/2)*(d*x)^(1/2))/a^(13/4)/d^(7/2)*2^(1/2)-9/16*b^(5/4)*ln(a^(1/2 
)*d^(1/2)+x*b^(1/2)*d^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*(d*x)^(1/2))/a^(13/4)/ 
d^(7/2)*2^(1/2)+9/2*b/a^3/d^3/(d*x)^(1/2)
 
3.7.95.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 181, normalized size of antiderivative = 0.57 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=-\frac {\sqrt {d x} \left (4 \sqrt [4]{a} \left (4 a^2-36 a b x^2-45 b^2 x^4\right )+45 \sqrt {2} b^{5/4} x^{5/2} \left (a+b x^2\right ) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+45 \sqrt {2} b^{5/4} x^{5/2} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{40 a^{13/4} d^4 x^3 \left (a+b x^2\right )} \]

input
Integrate[1/((d*x)^(7/2)*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]
 
output
-1/40*(Sqrt[d*x]*(4*a^(1/4)*(4*a^2 - 36*a*b*x^2 - 45*b^2*x^4) + 45*Sqrt[2] 
*b^(5/4)*x^(5/2)*(a + b*x^2)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4) 
*b^(1/4)*Sqrt[x])] + 45*Sqrt[2]*b^(5/4)*x^(5/2)*(a + b*x^2)*ArcTanh[(Sqrt[ 
2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)]))/(a^(13/4)*d^4*x^3*(a 
+ b*x^2))
 
3.7.95.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 352, normalized size of antiderivative = 1.11, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.536, Rules used = {1380, 27, 253, 264, 264, 266, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx\)

\(\Big \downarrow \) 1380

\(\displaystyle b^2 \int \frac {1}{b^2 (d x)^{7/2} \left (b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {1}{(d x)^{7/2} \left (a+b x^2\right )^2}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {9 \int \frac {1}{(d x)^{7/2} \left (b x^2+a\right )}dx}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {9 \left (-\frac {b \int \frac {1}{(d x)^{3/2} \left (b x^2+a\right )}dx}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {b \int \frac {\sqrt {d x}}{b x^2+a}dx}{a d^2}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \int \frac {d^3 x}{b x^2 d^2+a d^2}d\sqrt {d x}}{a d^3}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \int \frac {d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {9 \left (-\frac {b \left (-\frac {2 b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{a d}-\frac {2}{a d \sqrt {d x}}\right )}{a d^2}-\frac {2}{5 a d (d x)^{5/2}}\right )}{4 a}+\frac {1}{2 a d (d x)^{5/2} \left (a+b x^2\right )}\)

input
Int[1/((d*x)^(7/2)*(a^2 + 2*a*b*x^2 + b^2*x^4)),x]
 
output
1/(2*a*d*(d*x)^(5/2)*(a + b*x^2)) + (9*(-2/(5*a*d*(d*x)^(5/2)) - (b*(-2/(a 
*d*Sqrt[d*x]) - (2*b*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*S 
qrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + (Sqrt[2]*b^(1/4)* 
Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]))/(2*Sqrt[b 
]) - (-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*S 
qrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]*d + Sqrt[b]*d*x 
+ Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^(1/4)*b^(1/4)*Sq 
rt[d]))/(2*Sqrt[b])))/(a*d)))/(a*d^2)))/(4*a)
 

3.7.95.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.7.95.4 Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 198, normalized size of antiderivative = 0.62

method result size
risch \(-\frac {2 \left (-10 b \,x^{2}+a \right )}{5 a^{3} \sqrt {d x}\, x^{2} d^{3}}+\frac {b^{2} \left (\frac {\left (d x \right )^{\frac {3}{2}}}{2 b \,d^{2} x^{2}+2 a \,d^{2}}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{16 b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} d^{3}}\) \(198\)
derivativedivides \(2 d^{3} \left (-\frac {1}{5 a^{2} d^{4} \left (d x \right )^{\frac {5}{2}}}+\frac {2 b}{a^{3} d^{6} \sqrt {d x}}+\frac {b^{2} \left (\frac {\left (d x \right )^{\frac {3}{2}}}{4 b \,d^{2} x^{2}+4 a \,d^{2}}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} d^{6}}\right )\) \(206\)
default \(2 d^{3} \left (-\frac {1}{5 a^{2} d^{4} \left (d x \right )^{\frac {5}{2}}}+\frac {2 b}{a^{3} d^{6} \sqrt {d x}}+\frac {b^{2} \left (\frac {\left (d x \right )^{\frac {3}{2}}}{4 b \,d^{2} x^{2}+4 a \,d^{2}}+\frac {9 \sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{3} d^{6}}\right )\) \(206\)
pseudoelliptic \(\frac {\frac {9 b \sqrt {2}\, \left (b \,x^{2}+a \right ) \left (2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )\right ) \left (d x \right )^{\frac {5}{2}}}{16}-\frac {2 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} d^{2} \left (-\frac {45}{4} b^{2} x^{4}-9 a b \,x^{2}+a^{2}\right )}{5}}{d^{3} a^{3} \left (d x \right )^{\frac {5}{2}} \left (b \,x^{2}+a \right ) \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\) \(227\)

input
int(1/(d*x)^(7/2)/(b^2*x^4+2*a*b*x^2+a^2),x,method=_RETURNVERBOSE)
 
output
-2/5*(-10*b*x^2+a)/a^3/(d*x)^(1/2)/x^2/d^3+1/a^3*b^2*(1/2*(d*x)^(3/2)/(b*d 
^2*x^2+a*d^2)+9/16/b/(a*d^2/b)^(1/4)*2^(1/2)*(ln((d*x-(a*d^2/b)^(1/4)*(d*x 
)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+ 
(a*d^2/b)^(1/2)))+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+2*arctan 
(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2)-1)))/d^3
 
3.7.95.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.27 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.07 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {45 \, {\left (a^{3} b d^{4} x^{5} + a^{4} d^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {1}{4}} \log \left (729 \, a^{10} d^{11} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {3}{4}} + 729 \, \sqrt {d x} b^{4}\right ) - 45 \, {\left (i \, a^{3} b d^{4} x^{5} + i \, a^{4} d^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {1}{4}} \log \left (729 i \, a^{10} d^{11} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {3}{4}} + 729 \, \sqrt {d x} b^{4}\right ) - 45 \, {\left (-i \, a^{3} b d^{4} x^{5} - i \, a^{4} d^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {1}{4}} \log \left (-729 i \, a^{10} d^{11} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {3}{4}} + 729 \, \sqrt {d x} b^{4}\right ) - 45 \, {\left (a^{3} b d^{4} x^{5} + a^{4} d^{4} x^{3}\right )} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {1}{4}} \log \left (-729 \, a^{10} d^{11} \left (-\frac {b^{5}}{a^{13} d^{14}}\right )^{\frac {3}{4}} + 729 \, \sqrt {d x} b^{4}\right ) + 4 \, {\left (45 \, b^{2} x^{4} + 36 \, a b x^{2} - 4 \, a^{2}\right )} \sqrt {d x}}{40 \, {\left (a^{3} b d^{4} x^{5} + a^{4} d^{4} x^{3}\right )}} \]

input
integrate(1/(d*x)^(7/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")
 
output
1/40*(45*(a^3*b*d^4*x^5 + a^4*d^4*x^3)*(-b^5/(a^13*d^14))^(1/4)*log(729*a^ 
10*d^11*(-b^5/(a^13*d^14))^(3/4) + 729*sqrt(d*x)*b^4) - 45*(I*a^3*b*d^4*x^ 
5 + I*a^4*d^4*x^3)*(-b^5/(a^13*d^14))^(1/4)*log(729*I*a^10*d^11*(-b^5/(a^1 
3*d^14))^(3/4) + 729*sqrt(d*x)*b^4) - 45*(-I*a^3*b*d^4*x^5 - I*a^4*d^4*x^3 
)*(-b^5/(a^13*d^14))^(1/4)*log(-729*I*a^10*d^11*(-b^5/(a^13*d^14))^(3/4) + 
 729*sqrt(d*x)*b^4) - 45*(a^3*b*d^4*x^5 + a^4*d^4*x^3)*(-b^5/(a^13*d^14))^ 
(1/4)*log(-729*a^10*d^11*(-b^5/(a^13*d^14))^(3/4) + 729*sqrt(d*x)*b^4) + 4 
*(45*b^2*x^4 + 36*a*b*x^2 - 4*a^2)*sqrt(d*x))/(a^3*b*d^4*x^5 + a^4*d^4*x^3 
)
 
3.7.95.6 Sympy [F]

\[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\int \frac {1}{\left (d x\right )^{\frac {7}{2}} \left (a + b x^{2}\right )^{2}}\, dx \]

input
integrate(1/(d*x)**(7/2)/(b**2*x**4+2*a*b*x**2+a**2),x)
 
output
Integral(1/((d*x)**(7/2)*(a + b*x**2)**2), x)
 
3.7.95.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 290, normalized size of antiderivative = 0.91 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {\frac {8 \, {\left (45 \, b^{2} d^{4} x^{4} + 36 \, a b d^{4} x^{2} - 4 \, a^{2} d^{4}\right )}}{\left (d x\right )^{\frac {9}{2}} a^{3} b d^{2} + \left (d x\right )^{\frac {5}{2}} a^{4} d^{4}} + \frac {45 \, b^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{a^{3} d^{2}}}{80 \, d} \]

input
integrate(1/(d*x)^(7/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")
 
output
1/80*(8*(45*b^2*d^4*x^4 + 36*a*b*d^4*x^2 - 4*a^2*d^4)/((d*x)^(9/2)*a^3*b*d 
^2 + (d*x)^(5/2)*a^4*d^4) + 45*b^2*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)* 
(a*d^2)^(1/4)*b^(1/4) + 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqr 
t(sqrt(a)*sqrt(b)*d)*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a* 
d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)*sqrt(b)*d))/(sqrt(s 
qrt(a)*sqrt(b)*d)*sqrt(b)) - sqrt(2)*log(sqrt(b)*d*x + sqrt(2)*(a*d^2)^(1/ 
4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(1/4)*b^(3/4)) + sqrt(2)*log(sq 
rt(b)*d*x - sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^ 
(1/4)*b^(3/4)))/(a^3*d^2))/d
 
3.7.95.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 307, normalized size of antiderivative = 0.97 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {\sqrt {d x} b^{2} x}{2 \, {\left (b d^{2} x^{2} + a d^{2}\right )} a^{3} d^{2}} + \frac {9 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{4} b d^{5}} + \frac {9 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{8 \, a^{4} b d^{5}} - \frac {9 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{4} b d^{5}} + \frac {9 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{16 \, a^{4} b d^{5}} + \frac {2 \, {\left (10 \, b d^{2} x^{2} - a d^{2}\right )}}{5 \, \sqrt {d x} a^{3} d^{5} x^{2}} \]

input
integrate(1/(d*x)^(7/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")
 
output
1/2*sqrt(d*x)*b^2*x/((b*d^2*x^2 + a*d^2)*a^3*d^2) + 9/8*sqrt(2)*(a*b^3*d^2 
)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/ 
b)^(1/4))/(a^4*b*d^5) + 9/8*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)* 
(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^4*b*d^5) - 9/1 
6*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + 
sqrt(a*d^2/b))/(a^4*b*d^5) + 9/16*sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt 
(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/(a^4*b*d^5) + 2/5*(10*b*d^2 
*x^2 - a*d^2)/(sqrt(d*x)*a^3*d^5*x^2)
 
3.7.95.9 Mupad [B] (verification not implemented)

Time = 14.04 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.36 \[ \int \frac {1}{(d x)^{7/2} \left (a^2+2 a b x^2+b^2 x^4\right )} \, dx=\frac {\frac {9\,b^2\,d\,x^4}{2\,a^3}-\frac {2\,d}{5\,a}+\frac {18\,b\,d\,x^2}{5\,a^2}}{b\,{\left (d\,x\right )}^{9/2}+a\,d^2\,{\left (d\,x\right )}^{5/2}}-\frac {9\,{\left (-b\right )}^{5/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {d\,x}}{a^{1/4}\,\sqrt {d}}\right )}{4\,a^{13/4}\,d^{7/2}}+\frac {9\,{\left (-b\right )}^{5/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {d\,x}}{a^{1/4}\,\sqrt {d}}\right )}{4\,a^{13/4}\,d^{7/2}} \]

input
int(1/((d*x)^(7/2)*(a^2 + b^2*x^4 + 2*a*b*x^2)),x)
 
output
((9*b^2*d*x^4)/(2*a^3) - (2*d)/(5*a) + (18*b*d*x^2)/(5*a^2))/(b*(d*x)^(9/2 
) + a*d^2*(d*x)^(5/2)) - (9*(-b)^(5/4)*atan(((-b)^(1/4)*(d*x)^(1/2))/(a^(1 
/4)*d^(1/2))))/(4*a^(13/4)*d^(7/2)) + (9*(-b)^(5/4)*atanh(((-b)^(1/4)*(d*x 
)^(1/2))/(a^(1/4)*d^(1/2))))/(4*a^(13/4)*d^(7/2))